A Malliavin-Skorohod calculus in L^0 and L^1 for pure jump additive and Volterra-type processes

Josep Vives (josep.vives@ub.edu)
(Joint work with Giulia Di Nunno (UiO))

Universitat de Barcelona

Conference on Ambit fields and related topics
Aarhus, August 15-18, 2016
G. Di Nunno and J. V. (2016): *A Malliavin - Skorohod calculus in L^0 and L^1 for additive and Volterra type processes*. Stochastics. [DV]

Abstract

- In this paper we extend the Malliavin-Skorohod type calculus for pure jump additive processes to the L^0 and L^1 settings.
- We apply it to extend stochastic integration with respect to volatility modulated pure jump additive-driven Volterra processes.
- In particular, we define integrals with respect to Volterra processes driven by α-stable processes with $\alpha < 2$.
Motivation I

Consider a pure jump volatility modulated additive driven Volterra (VMAV) process X defined as

$$X(t) = \int_0^t g(t, s)\sigma(s)dJ(s)$$

provided the integral is well defined. Here J is a pure jump additive process, g is a deterministic function and σ is a predictable process with respect the natural completed filtration of J.

This kind of models, called volatility modulated Volterra processes, are part of the family of Ambit processes and are used in modeling turbulence, energy finance and others.
A major problem is to develop an integration theory with respect X as integrator, that is, to give a meaning to

$$\int_0^t Y(s)dX(s)$$

for a fixed t and a suitable stochastic processes Y. Recall that X is not necessarily a semimartingale.

This has been done in [BBPV], assuming J is a square integrable pure jump Lévy process and assuming Malliavin regularity conditions on Y in the L^2 setting.
Here we extend this integration theory to any pure jump additive process, not necessary square integrable, and in particular allowing to treat integration, for example, with respect to α-stable processes when $\alpha < 2$.

Integrability conditions related with Y are in the L^1 setting. So, our results are an extension on the previous ones in the finite activity case and treat new cases in the infinite activity case.
The Malliavin-Skorohod calculus for square integrable functionals of an additive process is today a well established topic. See for example Yablonski (2008).

In [SUV] a new canonical space for Lévy processes is introduced and a probabilistic interpretation of Malliavin-Skorohod operators in this space is obtained.

These operators defined in the canonical space are well defined beyond the L^2 setting.
This allows to explore the development of a Malliavin-Skorohod calculus for functionals adapted to a general additive processes that belong only to L^1 or L^0.

This is the main goal of our work, that can be seen as an extension of [SUV] using also ideas from Picard (1996).

In particular we prove several rules of calculus and a new version of the Clark-Haussmann-Ocone (CHO) formula in the L^1 setting.
Let $X = \{X_t, t \geq 0\}$ be an additive process, that is, a process with independent increments, stochastically continuous, null at the origin and with càdlàg trajectories.

Let $\mathbb{R}_0 := \mathbb{R} - \{0\}$.

For any fixed $\epsilon > 0$, denote $S_\epsilon := \{|x| > \epsilon\} \subseteq \mathbb{R}_0$.

Let us denote \mathcal{B} and \mathcal{B}_0 the σ–algebras of Borel sets of \mathbb{R} and \mathbb{R}_0 respectively.
The distribution of an additive process can be characterized by the triplet \((\Gamma_t, \sigma_t^2, \nu_t), \ t \geq 0\), where

- \(\{\Gamma_t, t \geq 0\}\) is a continuous function null at the origin.
- \(\{\sigma_t^2, t \geq 0\}\) is a continuous and non-decreasing function null at the origin.
- \(\{\nu_t, t \geq 0\}\) is a set of Lévy measures on \(\mathbb{R}\). Moreover, for any set \(B \in \mathcal{B}_0\) such that \(B \subseteq S_\epsilon\) for a certain \(\epsilon > 0\), \(\nu.(B)\) is a continuous and increasing function null at the origin.
Let $\Theta := [0, \infty) \times \mathbb{R}$. Denote $\theta := (t, x) \in \Theta$ and $d\theta = (dt, dx)$.

For $T \geq 0$, we introduce the measurable spaces $(\Theta_{T,\epsilon}, \mathcal{B}(\Theta_{T,\epsilon}))$ where $\Theta_{T,\epsilon} := [0, T] \times S_{\epsilon}$.

Observe that $\Theta_{\infty,0} = [0, \infty) \times \mathbb{R}_0$ and that Θ can be represented as $\Theta = \Theta_{\infty,0} \cup ([0, \infty) \times \{0\})$.
We introduce a measure \(\nu \) on \(\Theta_{\infty,0} \) such that for any \(B \in \mathcal{B}_0 \) we have \(\nu([0, t] \times B) := \nu_t(B) \). The hypotheses on \(\nu_t \) guarantee that \(\nu(\{t\} \times B) = 0 \) for any \(t \geq 0 \) and for any \(B \in \mathcal{B}_0 \). Note that in particular, \(\nu \) is \(\sigma \)-finite.

Let \(N \) be the jump measure associated to \(X \). Recall that it is a Poisson random measure on \(\mathcal{B}(\Theta_{\infty,0}) \) with parameter \(\nu \). Denote \(\tilde{N}(dt, dx) := N(dt, dx) - \nu(dt, dx) \).

We can introduce also a \(\sigma \)-finite measure \(\sigma \) on \([0, \infty)\) such that \(\sigma([0, t]) = \sigma_t^2 \).
According to the Lévy-Itô decomposition we can write:

\[X_t = \Gamma_t + W_t + J_t, \quad t \geq 0 \]

where

- \(\Gamma \) is a continuous deterministic function null at the origin.
- \(W \) is a centered Gaussian process with variance process \(\sigma^2 \).
J is an additive process with triplet \((0, 0, \nu_t)\) independent of \(W\), defined by

\[
J_t = \int_{\Theta_t,1} xN(ds, dx) + \lim_{\epsilon \downarrow 0} \int_{\Theta_t,\epsilon - \Theta_t,1} x\tilde{N}(ds, dx)
\]

where the convergence is a.s. and uniform with respect to \(t\) on every bounded interval. We call the process \(J = \{J_t, t \geq 0\}\) a pure jump additive process.

Moreover, if \(\{\mathcal{F}_t^W, t \geq 0\}\) and \(\{\mathcal{F}_t^J, t \geq 0\}\) are, respectively, the completed natural filtrations of \(W\) and \(J\), then, for every \(t \geq 0\), we have \(\mathcal{F}_t^X = \mathcal{F}_t^W \vee \mathcal{F}_t^J\).
We consider on Θ the $\sigma-$finite Borel measure

$$
\mu(dt, dx) := \sigma(dt)\delta_0(dx) + \nu(dt, dx).
$$

Note that μ is continuous in the sense that $\mu(\{t\} \times B) = 0$ for all $t \geq 0$ and $B \in \mathcal{B}$.

Then we define

$$
M(dt, dx) = (W \otimes \delta_0)(dt, dx) + \tilde{N}(dt, dx)
$$

that is a centered random measure with independent values such that

$$
\mathbb{E}[M(E_1)M(E_2)] = \mu(E_1 \cap E_2), \text{ for } E_1, E_2 \in \mathcal{B}(\Theta) \text{ with } \mu(E_1) < \infty \text{ and } \mu(E_2) < \infty.
$$
If we take $\sigma^2 \equiv 0$, $\mu = \nu$ and $M = \tilde{N}$, we recover the Poisson random measure case.

If we take $\nu = 0$, we have $\mu(dt, dx) := \sigma(dt)\delta_0(dx)$ and $M(ds, dx) = (W \otimes \delta_0)(ds, dx)$ and we recover the independent increment centered Gaussian measure case.

If we take $\sigma_t^2 := \sigma_L^2 t$ and $\nu(dt, dx) = dt\nu_L(dx)$, we obtain $M(ds, dx) = \sigma_L(W \otimes \delta_0)(ds, dx) + \tilde{N}(ds, dx)$ and we recover the Lévy case (stationary increments case).
Malliavin-Skorohod calculus for additive processes in L^2.

We recall the presentation of the Malliavin-Skorohod calculus with respect to the random measure M on its canonical space in the L^2–framework, as a first step towards our final goal of extending the calculus to the L^1 and L^0 frameworks.
The chaos representation property

- Given μ, we can consider the spaces

\[
\mathbb{L}_n^2 := L^2\left(\Theta^n, \mathcal{B}(\Theta)^{\otimes n}, \mu^{\otimes n}\right)
\]

and define for functions f in \mathbb{L}_n^2 the Itô multiple stochastic integrals $I_n(f)$ with respect to M in the usual way.

- Then we have the so-called chaos representation property, that is, for any functional $F \in L^2(\Omega, \mathcal{F}^X, \mathbb{P})$, where $\mathcal{F}^X = \bigvee_{t \geq 0} \mathcal{F}_t^X$, we have

\[
F = \sum_{n=0}^{\infty} I_n(f_n)
\]

for a certain unique family of symmetric kernels $f_n \in \mathbb{L}_n^2$.

Josep Vives (UB)

Aarhus, August 2016 18 / 74
The Malliavin and Skorohod operators I

The chaos representation property of $L^2(\Omega, \mathcal{F}^X, \mathbb{P})$ shows that this space has a Fock space structure. Thus it is possible to apply all the machinery related to the anhilation operator (Malliavin derivative) and the creation operator (Skorohod integral).

Consider $F = \sum_{n=0}^{\infty} l_n(f_n)$, with f_n symmetric and such that $\sum_{n=1}^{\infty} n^n ||f_n||_{L^2_n}^2 < \infty$. The Malliavin derivative of F is an object of $L^2(\Theta \times \Omega, \mu \otimes \mathbb{P})$, defined as

$$D_\theta F = \sum_{n=1}^{\infty} n l_{n-1} \left(f_n(\theta, \cdot) \right), \; \theta \in \Theta.$$

We denote by $\text{Dom}D$ the domain of this operator.
Let \(u \in L^2(\Theta \times \Omega, \mathcal{B}(\Theta) \otimes \mathcal{F}^X, \mu \otimes \mathbb{P}) \). For every \(\theta \in \Theta \) we have the chaos decomposition

\[
 u_\theta = \sum_{n=0}^{\infty} l_n(f_n(\theta, \cdot))
\]

where \(f_n \in \mathbb{L}^2_{n+1} \) is symmetric in the last \(n \) variables. Let \(\tilde{f}_n \) be the symmetrization in all \(n + 1 \) variables. Then we define the Skorohod integral of \(u \) by

\[
 \delta(u) = \sum_{n=0}^{\infty} l_{n+1}(\tilde{f}_n),
\]

in \(L^2(\Omega) \), provided \(u \in \text{Dom} \delta \), that means

\[
 \sum_{n=0}^{\infty} (n + 1)! \| \tilde{f}_n \|_{\mathbb{L}^2_{n+1}}^2 < \infty.
\]
Duality between the Malliavin and Skorohod operators

- If \(u \in \text{Dom}\ \delta \) and \(F \in \text{Dom}\ D \) we have the duality relation

\[
\mathbb{E}[\delta(u) F] = \mathbb{E} \int_{\Theta} u_\theta D_\theta F \mu(d\theta).
\]

- We recall that if \(u \in \text{Dom}\ \delta \) is actually predictable with respect to the filtration generated by \(X \), then the Skorohod integral coincides with the (non anticipating) Itô integral in the \(L^2 \)—setting with respect to \(M \).
Let $A \in \mathcal{B}(\Theta)$ and $\mathcal{F}_A := \sigma\{M(A') : A' \in \mathcal{B}(\Theta), A' \subseteq A\}$.

- F is \mathcal{F}_A–measurable if for any $n \geq 1$, $f_n(\theta_1, \ldots, \theta_n) = 0$, $\mu^\otimes n$ – a.e. unless $\theta_i \in A \ \forall \ i = 1, \ldots, n$.

- In particular, we are interested in the case $A = \Theta_t := [0, t) \times \mathbb{R}$. Denote $\mathcal{F}_{t-} := \mathcal{F}_{\Theta_{t-}}$. Obviously, if $F \in \text{Dom } D$ and it is \mathcal{F}_{t-}–measurable then $D_{s,x} F = 0$ for a.e. $s \geq t$ and any $x \in \mathbb{R}$.
The Clark-Haussmann-Ocone formula II

From the chaos representation property we can see that for $F \in L^2(\Omega)$,

$$E[F|\mathcal{F}_{t-}] = \sum_{n=0}^{\infty} l_n(f_n(\theta_1, \ldots, \theta_n) \prod_{i=1}^{n} 1_{[0,t]}(t_i)).$$

Then, for $F \in \text{Dom}D$ we have

$$D_{s,x}E[F|\mathcal{F}_{t-}] = E[D_{s,x}F|\mathcal{F}_{t-}] 1_{[0,t]}(s), (s, x) \in \Theta.$$
The Clark-Haussmann-Ocone formula III

Using these facts we can prove the very well known CHO formula: If $F \in \text{Dom}D$ we have

$$F = \mathbb{E}(F) + \delta(E[D_{t,x}F | \mathcal{F}_{t-}]).$$

- Note that being the integrand a predictable process, the Skorohod integral δ here above is actually an Itô integral.
- Note also that the CHO formula can be rewritten in a decompactified form as

$$F = \mathbb{E}(F) + \int_0^\infty E(D_{s,0}F | \mathcal{F}_{s-})dW_s + \int_{\Theta_{\infty,0}} E(D_{s,x}F | \mathcal{F}_{s-})\tilde{N}(ds, dx).$$
We set our work on the canonical space of J, substantially introduced in [SUV].

The construction is done first of all in the case ν is concentrated on $\Theta_{T,\epsilon}$ for a fixed $T > 0$ and $\epsilon > 0$, that is a finite activity case. Later the construction is extended to the case $\Theta_{\infty,0}$ taking $T \uparrow \infty$ and $\epsilon \downarrow 0$.

In the case ν concentrated on $\Theta_{T,\epsilon}$, and so finite, any trajectory of J can be totally described by a finite sequence

$$(t_1, x_1), \ldots, (t_n, x_n)$$

where $t_1, \ldots, t_n \in [0, T]$ are the jump instants, with $t_1 < t_2 < \cdots < t_n$, and $x_1, \ldots, x_n \in S_{\epsilon}$ are the corresponding sizes, for some n.

A canonical space for J II

- The extension to the space $\Theta_{\infty,0}$ is done through a projective system of probability spaces.
- For every $m \geq 1$ we consider the probability spaces

\[
(\Omega^J_m, \mathcal{F}_m, \mathbb{P}_m) := (\Omega^J_{\frac{1}{m}}, \mathcal{F}_{\frac{1}{m}}, \mathbb{P}_{\frac{1}{m}}),
\]

that are the canonical spaces corresponding to $\Theta_m := [0, m] \times S_{\frac{1}{m}}$.
- Then the canonical space Ω^J for J on $\Theta_{\infty,0}$ is defined as the projective limit of the system $(\Omega_m^J, m \geq 1)$.
In our setup, $\Omega^J = \bigcup_{n=0}^{\infty} \Theta^n_{\infty,0}$ and the probability measure \mathbb{P} is concentrated on the subset of

- The empty sequence α, corresponding to the element (α, α, \ldots).
- All finite sequences of pairs (t_i, x_i).
- All infinite sequences of pairs (t_i, x_i) such that for every $m > 0$ there is only a finite number of (t_i, x_i) on Θ_m.

Josep Vives (UB)
Now we establish the basis for a Malliavin-Skorohod calculus with respect to a pure jump additive process, constructively on the canonical space.

In general, the proofs of the following results are done directly on Ω_m^J and extended to Ω^J by dominated convergence.
Let $\theta = (s, x) \in \Theta_{\infty, 0}$. Let $\omega \in \Omega^J$, that is, $\omega := (\theta_1, \ldots, \theta_n, \ldots)$, with $\theta_i := (s_i, x_i)$.

We introduce the following two transformations from $\Theta_{\infty, 0} \times \Omega^J$ to Ω^J:

$$\epsilon_\theta^+ \omega := ((s, x), (s_1, x_1), (s_2, x_2), \ldots),$$

where a jump of size x is added at time s, and

$$\epsilon_\theta^- \omega := ((s_1, x_1), (s_2, x_2), \ldots) - \{(s, x)\},$$

where we take away the point $\theta = (s, x)$ from ω.
Properties of the Transformations

These two transformations are analogous to the ones introduced in Picard (1996).

Observe that $\epsilon^+\omega$ is well defined except on the set $\{(\theta, \omega) : \theta \in \omega\}$ that has null measure with respect $\nu \otimes P$. We can consider by convention that on this set, $\epsilon^+\omega := \omega$.

The case of $\epsilon_-\omega$ is also clear. In fact this operator satisfies $\epsilon^-\omega = \omega$ except on the set $\{(\theta, \omega) : \theta \in \omega\}$.

For simplicity of the notation sometimes we will denote $\hat{\omega}_i := \epsilon^-\omega$.
For a random variable $F \in L^0(\Omega^J)$, we define the operator

$$T : L^0(\Omega^J) \mapsto L^0(\Theta_\infty, 0 \times \Omega^J),$$

such that $(T_\theta F)(\omega) := F(\epsilon_\theta^+ \omega)$.

It is not difficult to see that if F is a \mathcal{F}^J-measurable, then

$$(T.F)(\cdot) : \Theta_\infty, 0 \times \Omega^J \longrightarrow \mathbb{R}$$

is $\mathcal{B}(\Theta_\infty, 0) \otimes \mathcal{F}^J$-measurable and $F = 0$, \mathbb{P}-a.s. implies $T.F(\cdot) = 0$, $\nu \otimes \mathbb{P}$-a.e. So, T is a closed linear operator defined on the entire $L^0(\Omega^J)$.

The operator T II

But if we want to assure $T.F(\cdot) \in L^1(\Theta_\infty,0 \times \Omega^J)$ we have to restrict the domain and guarantee that

$$
\mathbb{E} \int_{\Theta_\infty,0} |T_\theta F| \nu(d\theta) < \infty.
$$

This requires a condition that is strictly stronger than $F \in L^1(\Omega^J)$.
The operator T_{III}

Concretely, denoting $k_m := e^{-\nu(\Theta_m - \Theta_{m-1})}$, we have to assume that

$$
\sum_{m=1}^{\infty} k_m \sum_{n=0}^{\infty} \frac{n}{n!} \int_{(\Theta_m - \Theta_{m-1})^n} |F(\theta_1, \ldots, \theta_n)| \nu(d\theta_1) \ldots \nu(d\theta_n) < \infty,
$$

whereas $F \in L^1(\Omega)$ is equivalent only to

$$
\sum_{m=1}^{\infty} k_m \sum_{n=0}^{\infty} \frac{1}{n!} \int_{(\Theta_m - \Theta_{m-1})^n} |F(\theta_1, \ldots, \theta_n)| \nu(d\theta_1) \ldots \nu(d\theta_n) < \infty.
$$
For a random field $u \in L^0(\Theta_\infty, 0 \times \Omega^J)$ we define the operator

$$S : \text{Dom} S \subseteq L^0(\Theta_\infty, 0 \times \Omega^J) \rightarrow L^0(\Omega^J)$$

such that

$$(Su)(\omega) := \int_{\Theta_\infty,0} u_\theta(\epsilon^- \omega) N(d\theta, \omega) := \sum_i u_{\theta_i}(\hat{\omega}_i) < \infty.$$

In particular, if $\omega = \alpha$, we define $(Su)(\alpha) = 0.$
The operator S is well defined and closed from $L^1(\Theta_{\infty,0} \times \Omega^J)$ to $L^1(\Omega)$ as the following proposition says:

Proposition

If $u \in L^1(\Theta_{\infty,0} \times \Omega^J)$, Su is well defined and takes values in $L^1(\Omega)$. Moreover

$$
\mathbb{E} \int_{\Theta_{\infty,0}} u_{\theta}(\varepsilon_{\theta}^{-} \omega) N(d\theta, \omega) = \mathbb{E} \int_{\Theta_{\infty,0}} u_{\theta}(\omega) \nu(d\theta).
$$
THE OPERATOR S III

Given $\theta = (s, x)$ we can define for any $\omega, \tilde{\omega}_s$ as the ω restricted to jump instants strictly before s. In this case, obviously, $\epsilon_\theta \tilde{\omega}_s = \tilde{\omega}_s$. If u is predictable we have $u_\theta(\omega) = u_\theta(\tilde{\omega}_s)$ and so

$$u_\theta(\epsilon_\theta \omega) = u_\theta(\omega),$$

and

$$(Su)(\omega) = \int_{\Theta_{\infty, 0}} u_\theta(\epsilon_\theta \omega) N(d\theta, \omega) = \int_{\Theta_{\infty, 0}} u_\theta(\omega) N(d\theta, \omega).$$
The following theorem is the fundamental relationship between operators S and T:

Theorem

Consider $F \in L^0(\Omega^J)$ and $u \in \text{Dom} S$. Then $F \cdot Su \in L^1(\Omega^J)$ if and only if $TF \cdot u \in L^1(\Theta_{\infty,0} \times \Omega^J)$ and in this case

$$
\mathbb{E}(F \cdot Su) = \mathbb{E} \int_{\Theta_{\infty,0}} T_\theta F \cdot u_\theta \nu(d\theta).
$$
Rules of calculus

- If u and $TF \cdot u$ belong to $DomS$ we have

 $$F \cdot Su = S(TF \cdot u), \ P - a.e.$$

- If u and Tu are in $DomS$ then

 $$T_\theta(Su) = u_\theta + S(T_\theta u), \ \nu \otimes P - a.e.$$
Now we introduce the operator $\psi_{t,x} := T_{t,x} - Id$. Observe that this operator is linear, closed and satisfies the property

$$\psi_{t,x}(F G) = G \psi_{t,x} F + F \psi_{t,x} G + \psi_{t,x}(F) \psi_{t,x}(G).$$
The operator \mathcal{E}

On other hand, for $u \in L^0(\Theta_{\infty}, 0 \times \Omega^J)$ we consider the operator:

$$\mathcal{E} : \text{Dom}\mathcal{E} \subseteq L^0(\Theta_{\infty}, 0 \times \Omega^J) \longrightarrow L^0(\Omega^J)$$

such that

$$(\mathcal{E} u)(\omega) := \int_{\Theta_{\infty}, 0} u_\theta(\omega) \nu(d\theta).$$

Note that $\text{Dom}\mathcal{E}$ is the subset of processes in $L^0(\Theta_{\infty}, 0 \times \Omega^J)$ such that $u(\cdot, \omega) \in L^1(\Theta_{\infty}, 0), \mathbb{P} - \text{a.e.}$

We have also that

$$\int_{\Theta_{\infty}, 0} u_\theta(\epsilon_\theta^\omega) \nu(d\theta) = \int_{\Theta_{\infty}, 0} u_\theta(\omega) \nu(d\theta), \mathbb{P} - \text{a.s.}$$
The operator Φ

Then, for $u \in Dom\Phi := DomS \cap Dom\mathcal{E} \subseteq L^0(\Theta_\infty,0 \times \Omega^J)$, we define

$$\Phi u := Su - \mathcal{E}u.$$

Note that

- $L^1(\Theta_\infty,0 \times \Omega^J) \subseteq Dom\Phi$.
- $E(\Phi u) = 0$, for any $u \in L^1(\Theta_\infty,0 \times \Omega)$.
- For any $u \in Dom\Phi$, predictable,

$$\Phi(u) = \int_{\Theta_\infty,0} u_\theta(\omega) \tilde{N}(d\theta,\omega).$$

- $u \in L^2(\Theta_\infty,0 \times \Omega^J)$ not implies $u \in L^1(\Theta_\infty,0 \times \Omega^J)$ nor $u \in Dom\Phi$.

As a corollary of the duality between T and S we have the following result:

Proposition

Consider $F \in L^0(\Omega^J)$ and $u \in \text{Dom}\Phi$. Assume also $F \cdot u \in L^1(\Theta_\infty,0 \times \Omega^J)$. Then $F \cdot \Phi u \in L^1(\Omega^J)$ if and only if $\Psi F \cdot u \in L^1(\Theta_\infty,0 \times \Omega^J)$ and in this case

$$
\mathbb{E}(F \cdot \Phi u) = \mathbb{E}\left(\int_{\Theta_\infty,0} \Psi \theta F \cdot u_\theta \nu(d\theta) \right).
$$
Rules of calculus

- If $F \in L^0(\Omega^J)$ and u, $F \cdot u$ and $\Psi F \cdot u$ belong to $\text{Dom}\Phi$ we have
 \[\Phi(F \cdot u) = F \cdot \Phi u - \Phi(\Psi F \cdot u) - \mathcal{E}(\Psi F \cdot u), \ P - \text{a.s.} \]

- If u and Ψu belong to $\text{Dom}\Phi$ we have
 \[\Psi_\theta(\Phi u) = u_\theta + \Phi(\Psi_\theta u), \ \nu \otimes P - \text{a.e.} \]
Consider now the operators D and δ restricted to the pure jump case, that is associated to the measure $\tilde{N}(ds, dx)$. We write D^J and δ^J. We have the following result:

Lemma

For any n, consider the set $\Theta_{\mathcal{I}, \epsilon}^{n, \ast} = \{(\theta_1, \ldots, \theta_n) \in \Theta_{\mathcal{I}, \epsilon}^n : \theta_i \neq \theta_j \text{ if } i \neq j\}$. Then, for any $g_k \in L^2(\Theta_{\infty, 0}^{k, \ast})$ for $k \geq 1$ and $\omega \in \Omega^J$ we have, a.s.,

$$I_k(g_k)(\omega) = \int_{\Theta_{\mathcal{I}, \epsilon}^{k, \ast}} g_k(\theta_1 \ldots, \theta_k) \tilde{N}(\omega, d\theta_1) \cdots \tilde{N}(\omega, d\theta_k).$$

The proof is based on the fact that both expressions coincide for simple functions and define bounded linear operators.
Relationship between D^J, δ^J, Ψ and Φ

For a fixed $k \geq 0$, consider $F = I_k(g_k)$ with g_k a symmetric function of $L^2(\Theta^{k,*}_{\infty,0})$. Then, F belongs to $DomD^J \cap Dom\Psi$ and

$$D^J I_k(g_k) = \Psi I_k(g_k), \ n \otimes \mathbb{P} - \text{a.e.}$$

For fixed $k \geq 1$, consider $u_\theta = I_k(g_k(\cdot, \theta))$ where $g_k(\cdot, \cdot) \in L^2(\Theta^{k+1,*}_{\infty,0})$ is symmetric with respect to the first k variables. Assume also $u \in Dom\Phi$. Then,

$$\Phi(u) = \delta^J(u), \ \mathbb{P} - \text{a.e.}$$
Relationship between the operators

Let $F \in L^2(\Omega^J)$. Then, $F \in \text{Dom}D^J \iff \Psi F \in L^2(\Theta_\infty,0 \times \Omega_J)$, and in this case

$$D^J F = \Psi F, \ \nu \otimes P - \text{a.e.}$$

Let $u \in L^2(\Theta_\infty,0 \times \Omega_J) \cap \text{Dom}\Phi$. Then $u \in \text{Dom}\delta^J \iff \Phi u \in L^2(\Omega^J)$, and in this case

$$\delta^J u = \Phi u, \ \mathbb{P} - \text{a.s.}$$
As an application of the previous results in the pure jump case we hereafter prove a CHO-type formula as an integral representation of random variables in $L^1(\Omega^J)$.

Theorem

Let $F \in L^1(\Omega^J)$ and assume $\Psi F \in L^1(\ThetaM0 \times \Omega^J)$. Then

$$F = \mathbb{E}(F) + \Phi(\mathbb{E}(\Psi_{t,X} F | \mathcal{F}_{t-})), \text{ a.s.}$$
Remark

Observe that under the conditions of the previous theorem we have

$$\psi_{s,x} E[F | \mathcal{F}_{\Theta_{t-}}] = E[\psi_{s,x} F | \mathcal{F}_{\Theta_{t-}}] 1_{[0,t)}, \nu \otimes \mathbb{P} - a.e.$$
EXAMPLE 1 I

Consider a pure jump additive process L. On one hand, for any t, we have the Lévy-Itô decomposition:

$$L_t = \Gamma_t + \int_0^t \int_{\{|x|>1\}} xN(ds, dx) + \int_0^t \int_{\{|x|\leq 1\}} x\tilde{N}(ds, dx).$$

Consider L_T. Assume $\mathbb{E}(|L_T|) < \infty$. Recall that this is equivalently to

$$\int_0^t \int_{|x|>1} |x|\nu(ds, dx) < \infty.$$

Then we can write

$$L_t = \Gamma_t + \int_0^t \int_{\{|x|>1\}} x\nu(ds, dx) + \int_0^t \int_{\mathbb{R}} x\tilde{N}(ds, dx).$$
Example 1 II

On the other hand, applying the CHO formula, we have

\[\psi_{s,x}L_T = x \mathbb{1}_{[0,T]}(s) \text{ and } E(\psi_{s,x}L_T|\mathcal{F}_{s-}) = x \mathbb{1}_{[0,T]}(s). \]

So, the hypothesis \(E(|L_T|) < \infty \) is equivalent to

\[\mathbb{E} \int_0^T \int_{\mathbb{R}} |\psi_{s,x}L_T| \nu(ds, dx) < \infty \]

and

\[L_T = \mathbb{E}(L_T) + \int_0^T \int_{\mathbb{R}} x \tilde{N}(ds, dx). \]

Observe that this is coherent with the previous decomposition because

\[\mathbb{E}(L_T) = \Gamma_T + \int_0^T \int_{\{|x|>1\}} x \nu(ds, dx). \]
Let $X := \{X_t, t \in [0, T]\}$ be a pure jump Lévy process with triplet $(\gamma_L t, 0, \nu_L t)$. Let $S_t := e^{X_t}$ be an asset price process. Let Q be a risk-neutral measure. In order $e^{-rt} e^{X_t}$ be a Q–martingale we need to assume some restrictions on ν_L and γ_L:

$$\int_{|x| \geq 1} e^x \nu_L(dx) < \infty$$

and

$$\gamma_L = \int_{\mathbb{R}} (e^y - 1 - y \mathbb{1}_{\{|y|<1\}}) \nu(dy).$$
These conditions allow us to write without losing generality,

\[X_t = x + (r - c_2)t + \int_0^t \int \int_\mathbb{R} y \tilde{N}(ds, dy), \]

where

\[c_2 := \int \int_\mathbb{R} (e^y - 1 - y) \nu_L(dy) \]

and \(N \) is a Poisson random measure under \(\mathbb{Q} \).

According to the CHO formula if \(F = S_T \in L^1(\Omega) \) and
\[\mathbb{E}_\mathbb{Q}[\Psi_s,x S_T | \mathcal{F}_{s-}] \in L^1(\Omega \times [0, T]) \]
we have

\[S_T = \mathbb{E}_\mathbb{Q}(S_T) + \int \int \int_{\Theta_{T,0}} \mathbb{E}_\mathbb{Q}[\Psi_s,x S_T | \mathcal{F}_{s-}] \tilde{N}(ds, dx). \]
Observe that

\[\Psi_{s,x} S_T(\omega) = S_T(e^x - 1), \; \ell \times \nu_L \times \mathbb{Q} - \text{a.s.}, \]

and this process belongs to \(L^1(\Omega \times \Theta_{\infty,0}) \) if and only if

\[\int_{\mathbb{R}} |e^x - 1| \nu_L(dx) < \infty. \]

Then, in this case, we have

\[S_T = \mathbb{E}_Q(S_T) + \int_{\Theta_{T,0}} e^{r(T-s)}(e^x - 1) S_s \tilde{N}(ds, dx). \]

So, this result covers Lévy processes with finite activity and Lévy processes with infinite activity but finite variation.
Consider a pure jump volatility modulated additive driven Volterra (VMAV) process X defined as

$$X(t) = \int_0^t g(t, s)\sigma(s)\,dJ(s)$$

provided the integral is well defined. Here J is a pure jump additive processes, g is a deterministic function and σ is a predictable process with respect the natural completed filtration of J.

Josep Vives (UB)
Recall that using the Lévy-Itô representation J can be written as

$$J(t) = \Gamma_t + \int_{\Theta_t,0-\Theta_t,1} x\tilde{N}(ds, dx) + \int_{\Theta_t,1} xN(ds, dx),$$

where Γ is a continuous deterministic function that we assume of bounded variation in order to admit integration with respect to $d\Gamma$.
For each t, X_t is well defined if

$$ (H1) : \int_0^\infty |g(t, s)\sigma(s)| \, d\Gamma_s < \infty, $$

$$ (H2) : \int_{\Theta_{\infty, 0}} (1 \wedge (g(t, s)\sigma(s)x)^2) \nu(dx, ds) < \infty, $$

and

$$ (H3) : \int_{\Theta_{\infty, 0}} |g(t, s)\sigma(s)x[\mathbb{1}_{\{|g(t,s)\sigma(s)x| \leq 1\}} - \mathbb{1}_{\{|x| \leq 1\}}]| \nu(dx, ds) < \infty. $$
Hereafter we discuss the problem of developing an integration theory with respect to X as integrator, i.e. to give a meaning to

$$\int_0^t Y(s) dX(s)$$

for a fixed t and a suitable stochastic processes Y.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

- Exploiting the representation of J, an integration with respect to X can be treated as the sum of integrals with respect to the corresponding components of J.
- It is enough to define integrals with respect to $\int_0^t g(t, s)\sigma(s)d\Gamma_s$, $\int_0^t \int_{|x|\leq 1} g(t, s)\sigma(s)x\tilde{N}(ds, dx)$ and $\int_0^t \int_{|x|>1} g(t, s)\sigma(s)xN(ds, dx)$.
- Under the assumptions that Γ has finite variation and using the fact that N on $[0, t] \times \{|x| > \delta\}$, for any $\delta > 0$, is a.s. a finite measure, the integration with respect to the first and third term presents no difficulties.
We have to discuss the second term, specifically the case when J has infinite activity and the corresponding X is not a semimartingale. In fact, if X was a semimartingale, we could perform the integration in the Itô sense.

We can refer to [BBPV] for a discussion of the conditions on g in order X be or not a semimartingale.

In [BBPV], an integral with respect to a non semimartingale X driven by a Lévy process by means of the Malliavin-Skorohod calculus is defined. Their technique is naturally constrained to an L^2 setting.
Within the framework presented in this paper, we can extend the definition proposed in [BBPV] to reach out for additive processes beyond the L^2 setting.

Assume the following hypothesis on X and Y:

- For $s \geq 0$, the mapping $t \mapsto g(t, s)$ is of bounded variation on any interval $[u, v] \subseteq (s, \infty)$.
- The function

$$\mathcal{K}_g(Y)(t, s) := Y(s)g(t, s) + \int_s^t (Y(u) - Y(s))g(du, s), \quad t > s,$$

is well defined a.s., in the sense that $(Y(u) - Y(s))$ is integrable with respect to $g(du, s)$ as a pathwise Lebesgue-Stieltjes integral.
Integration with respect pure jump volatility modulated Volterra processes

- The mappings

\[
(s, x) \rightarrow \mathcal{K}_g(Y)(t, s)\sigma(s)x \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)
\]

and

\[
(s, x) \rightarrow \psi_{s,x}(\mathcal{K}_g(Y)(t, s)\sigma(s))x \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)
\]

belong to \(\text{Dom}\Phi\).
Integration with respect pure jump volatility modulated Volterra processes

Then, the following integral, is well defined:

\[
\int_0^t Y(s) d\left(\int_0^s \int_{|x| \leq 1} g(s, u) \sigma(u) x \tilde{N}(du, dx) \right)
\]

\[
:= \Phi(x \mathcal{K}_g(Y)(t, s) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x))
\]

\[
+ \Phi(x \psi_{s,x}(\mathcal{K}_g(Y)(t, s)) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x))
\]

\[
+ \mathcal{E}(x \psi_{s,x}(\mathcal{K}_g(Y)(t, s)) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)).
\]
Integration with respect pure jump volatility modulated Volterra processes

- This result extends the definition in [BBPV] to any pure jump additive process \(J \), i.e. beyond square integrability.
- The proof relies on the definitions of \(\Phi \), \(\Psi \) and the developed calculus rules.
- In the finite activity case,
 \[
 L^2(\Theta_\infty, 0 \times \Omega^J) \subseteq L^1(\Theta_\infty, 0 \times \Omega^J)
 \]
 and our result is an extension of the definition in [BBPV].
- In the infinite activity case, our Theorem covers cases not covered by [BBPV] and viceversa.
Hereafter we give a classical example of a pure jump Lévy process without second moment as a driver and we consider a kernel function g of shift type, i.e. it only depends on the difference $t - s$. For simplicity we assume moreover $\sigma \equiv 1$. The chosen kernel appears in applications to turbulence.

Assume L to be a symmetric α–stable Lévy process, for $\alpha \in (0, 2)$. It corresponds to the triplet $(0, 0, \nu_L)$ with $\nu_L(dx) = c|x|^{-1-\alpha}dx$.
Example II

Take

\[g(t, s) := (t - s)^{\beta - 1} e^{-\lambda (t - s)} 1_{[0,t]}(s) \]

with \(\beta \in (0, 1) \) and \(\lambda > 0 \). Note that

\[g(du, s) = -g(u, s) \left(\frac{1 - \beta}{u - s} + \lambda \right) du. \]
Example III

We concentrate on the component

$$J(t) = \int_0^t \int_{\{|x|\leq 1\}} x\tilde{N}(ds, dx),$$

and so first of all on the definition of the integral

$$X(t) := \int_0^t g(t, s)dJ(s) = \int_0^t \int_{|x|\leq 1} g(t, s)x\tilde{N}(ds, dx), \quad t \geq 0.$$
Example IV

In relation with this integral, that is not a semimartingale, we have four situations:

1. If $\alpha \in (0, 1)$ and $\beta > \frac{1}{2}$, $g(t, s)x$ belongs to $L^1 \cap L^2$.
2. If $\alpha \in (0, 1)$ and $\beta \leq \frac{1}{2}$, $g(t, s)x$ belongs to L^1 but not to L^2.
3. If $\alpha \in [1, 2)$ and $\beta > \frac{1}{2}$, $g(t, s)x$ belongs to L^2 but not to L^1.
4. If $\alpha \in [1, 2)$ and $\beta \leq \frac{1}{2}$, $g(t, s)x$ belongs not to L^2 nor to L^1.

Only in case (4) the integral is not necessarily well defined.
Example V

Just to show the types of computation involved, let us consider the particular case of a VMAV process as integrand. Namely,

\[
Y(s) = \int_0^s \int_{|x| \leq 1} \phi(s - u)x\tilde{N}(du, dx), \quad 0 \leq s \leq T,
\]

where \(\phi \) is a positive continuous function such that the integral \(Y \) is well defined.

Consider the case \(\alpha < 1 \) and \(\beta \in (0, 1) \), not covered by [BBPV] if \(\beta \leq \frac{1}{2} \).
Example VI

In order to see that \(\int_0^t Y(s-)dX(s) \) is well defined we have to check:

1. The process \((Y(u) - Y(s))\) is integrable with respect to \(g(du, s)\) on \((s, t]\), as a pathwise Lebesgue-Stieltjes integral.

2. The mappings

\[
(s, x) \mapsto x \mathcal{K}_g(Y)(t, s) \mathbb{1}_{[0,t]}(s) \mathbb{1}_{\{|x| \leq 1\}}
\]

and

\[
(s, x) \mapsto x \psi_{s,x}(\mathcal{K}_g(Y)(t, s)) \mathbb{1}_{[0,t]}(s) \mathbb{1}_{\{|x| \leq 1\}}
\]

belong to \(Dom\Phi\).
We have

\[\mathcal{K}_g(Y)(t, s) = g(t, s) \int_{[0,s]} \int_{|x| \leq 1} \phi(s - v) x \tilde{N}(dv, dx) \]

\[- \int_s^t g(u, s) \left(\frac{1 - \beta}{u - s} + \lambda \right) \int_{[s,u]} \int_{|x| \leq 1} \phi(u - v) x \tilde{N}(dv, dx) du \]

\[- \int_s^t g(u, s) \left(\frac{1 - \beta}{u - s} + \lambda \right) \int_{[0,s]} \int_{|x| \leq 1} \left[\phi(u - v) - \phi(s - v) \right] x \tilde{N}(dv, dx) du \]
Example VIII

In terms of \(\Phi \) we can rewrite

\[
\begin{align*}
\mathcal{K}_g(Y)(t, s) &= g(t, s)\Phi(\phi(s - \cdot))1_{\{|x| \leq 1\}}1_{[0,s)} \\
&- \int_s^t g(u, s)\left(\frac{1 - \beta}{u - s} + \lambda\right)\Phi(\phi(u - \cdot))1_{\{|x| \leq 1\}}1_{[s,u)}(\cdot)\,du \\
&- \int_s^t g(u, s)\left(\frac{1 - \beta}{u - s} + \lambda\right)\Phi([\phi(u - \cdot) - \phi(s - \cdot)])1_{\{|x| \leq 1\}}1_{[0,s)}(\cdot)\,du.
\end{align*}
\]

Moreover we have

\[
\begin{align*}
\Psi_{s,x}\mathcal{K}_g(Y)(t, s) &= -x1_{\{|x| \leq 1\}} \int_s^t g(u, s)\phi(u - s)\left(\frac{1 - \beta}{u - s} + \lambda\right)1_{[0,u)}(s)\,du.
\end{align*}
\]
So, it is enough to check that the mappings

\[(s, x) \rightarrow x \mathcal{K}_g(Y)(t, s) \mathbb{1}_{[0, t]}(s) \mathbb{1}_{\{|x| \leq 1\}}\]

and

\[(s, x) \rightarrow x \psi_{s, x}(\mathcal{K}_g(Y)(t, s)) \mathbb{1}_{[0, t]}(s) \mathbb{1}_{\{|x| \leq 1\}}\]

are in \(L^1(\Theta_{\infty, 0} \times \Omega)\).
If for example we consider the case $\phi(y) = y^\gamma$ with $\gamma > 0$ and $\beta + \gamma \geq 1$ is not difficult to check the mappings are in L^1 and we conclude that the integral

$$\int_0^t Y(s-)dX(s)$$

is well defined.
Thank you for the attention

Tak

Gràcies